Crystal Structure

Communications

ISSN 0108-2701

catena-Poly[[[bis(perchlorato-O)-(1,10-phenanthroline- N, N^{\prime})-copper(II)]- $\mu-4,4^{\prime}$-bi-pyridine- $\left.N: N^{\prime}\right]$ monohydrate]

Tong, Chen and Ng

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Communications

ISSN 0108-2701

catena-Poly[[[bis(perchlorato-O)-(1,10-phenanthroline- N, N^{\prime})-copper(II)]- μ-4,4'-bipyridine- $\left.N: N^{\prime}\right]$ monohydrate]

Ming-Liang Tong, ${ }^{a}$ Xiao-Ming Chen ${ }^{\text {a* }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$
${ }^{\mathrm{a}}$ School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: cescxm@zsu.edu.cn

Received 7 June 2000
Accepted 9 August 2000

Data validation number: IUC0000213
The Cu atom in the title complex $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has an $\mathrm{N}_{4} \mathrm{O}_{2}$ octahedral coordination geometry, the Cu atoms being bridged by the bipyridine and chelated by the phenanthroline heterocycles. Adjacent molecules are linked into a zigzag chain running along the c axis of the monoclinic unit cell. The chains are connected through lattice water molecules to produce a layer structure.

Comment

Coordination polymers that are constructed using 4,4'-bipyridine as the spacer exhibit a variety of topological motifs (Batten \& Robson, 1998). Of particular interest are the motifs having cavities because small molecules can be clathrated (Fujita et al., 1994; Janiak, 1997; Yaghi et al., 1998; Kitagawa \& Kondo, 1998; Hagrman et al., 1999). We have reported a number of one-, two- and three-dimensional coordination polymers of $4,4^{\prime}$-bipyridine (abbreviated as $4,4^{\prime}$-bpy) and other related spacers (Chen et al., 1996; Tong, Chen, Yu \& Mak, 1998; Tong, Ye et al., 1998; Tong, Chen, Ye \& Ng, 1998; Tong, Zheng \& Chen, 1999; Tong, Chen et al., 1999; Tong, Lee et al., 1999; Tong \& Chen, 2000; Tong, Chen \& Chen, 2000). Our attempt to obtain a two-dimensional architecture with copper perchlorate that is chelated by 1,10 -phenanthroline (phen) gave only one-dimensional $\left[\mathrm{Cu}\left(4,4^{\prime}\right.\right.$-bpy)(phen)$\left.\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{I})$.

The Cu atom shows octahedral coordination. Two N atoms from a pair of cis-related 4, 4^{\prime}-bpy ligands coordinate to the Cu atom $[\mathrm{Cu}-\mathrm{N} 2.009$ (4) and 2.025 (5) \AA], which is chelated by the phen heterocycle $[\mathrm{Cu}-\mathrm{N} 1.998$ (4) and 2.028 (5) A]. The perchlorate anions are trans to each other, but one is much farther from the Cu atom that the other $[\mathrm{Cu}-\mathrm{O} 2.377$ (5) and 2.728 (5) \AA]. The $\mathrm{Cu}-\mathrm{N}_{\text {phen }}$ distances are similar to those found in other phen complexes (Baggio et al., 1995; Solans et al., 1990) and the $\mathrm{Cu}-\mathrm{N}\left(4,4^{\prime}-\mathrm{bpy}\right)$ distances are also similar to

(I)
those found in related complexes (Chen et al., 1992, 1996; Tong, Chen, Yu \& Mak, 1998; Tong, Ye et al., 1998; Tong \& Chen, 2000; Tong, Chen \& Chen, 2000).

In the zigzag $\left[\mathrm{Cu}\left(4,4^{\prime} \text {-bpy }\right)(\text { phen })\left(\mathrm{ClO}_{4}\right)_{2}\right]_{n}$ chains, the metal atoms are $10.93 \AA$ apart. The separation is also observed in catena-(2,2'-bpy) $\left(\mathrm{ClO}_{4}\right)\left(\mu_{2}-4,4^{\prime}\right.$-bpy $) \mathrm{Cu}$ (Chen et al., 1992) and catena- $\left(\mu_{2}-4,4^{\prime}\right.$-bpy $)\left(\mathrm{CH}_{3} \mathrm{~N}\right)_{2}(2,9$-dimethylphen $) \mathrm{Cu}^{\mathrm{I}} \cdot \mathrm{BF}_{4}$ (Blake et al., 1998). However, the rings of the $4,4^{\prime}$-bpy bridge are twisted by $41.4(1)^{\circ}$, wheareas those in $\left(2,2^{\prime}-\right.$ bpy) $\left(\mathrm{ClO}_{4}\right)\left(\mu_{2}-4,4^{\prime}\right.$-bpy) Cu are coplanar (Chen et al., 1992).

In (I), the lattice water molecule forms hydrogen bonds to perchlorate of two adjacent chains $[\mathrm{O} \cdots \mathrm{O}=2.64$ (2) and 3.00 (2) \AA], that to the strongly bonded perchlorate being much longer than that to weakly bonded ion.

Experimental

Phen (1 mmol) dissolved in a small volume of ethanol (4 ml) was added to $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ dissolved in water $(10 \mathrm{ml})$. To the warm solution was added $4,4^{\prime}$-bpy (1 mmol) dissolved in ethanol (5 ml), followed by $\mathrm{NaClO}_{4}(2 \mathrm{mmol})$ in water (5 ml). Crystals precipitated from solution after a few days in almost quantitative yield.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.} \\
\left.\left.(\mathrm{ClO})_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} & D_{x}=1.717 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=616.84 & \text { Mo Ka radiation } \\
\text { Monoclinic, } P 2_{1} / n & \text { Cell parameters from } 25 \\
a=12.553(1) \AA & \text { reflections } \\
b=14.4169(9) \AA & \theta=7.5-15^{\circ} \\
c=13.2205(9) \AA & \mu=1.202 \mathrm{~mm}^{-1} \\
\beta=94.377(7)^{\circ} & T=298(2) \mathrm{K} \\
V=2385.5(3) \AA \AA^{3} & \text { Block, blue } \\
Z=4 & 0.42 \times 0.36 \times 0.34 \mathrm{~mm} \\
&
\end{array}
$$

Data collection

> Siemens $R 3 m$ diffractometer ω scans
> Absorption correction: ψ scan \quad (North et al., 1968)
> $\quad T_{\min }=0.596, T_{\max }=0.665$
> 5775 measured reflections
> 4185 independent reflections
> 2883 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.173$
$S=1.028$
4187 reflections
343 parameters
H -atom parameters constrained
$R_{\text {int }}=0.004$
$\theta_{\text {max }}=24.98^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 17$
$l=-15 \rightarrow 15$
2 standard reflections every 120 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0826 P)^{2} \\
&+6.1274 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.77 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.998(4)$	$\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{i}}$	$2.025(5)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.028(5)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.382(4)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.009(4)$	$\mathrm{Cu} 1-\mathrm{O} 5$	$2.731(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$82.0(2)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$89.8(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$169.7(2)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{i}}$	$87.9(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{i}}$	$96.2(2)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$92.7(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$96.5(2)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$92.2(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$78.6(2)$	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$93.7(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$93.5(2)$	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5$	$87.5(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{i}}$	$177.0(2)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$175.1(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$88.9(2)$		

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1W1 \cdots O4	0.90	2.13	$3.00(2)$	159
O1 $W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.22	$2.64(2)$	108
Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$.				

The $\mathrm{Cl}-\mathrm{O}$ distances in the anions were restrained to be approximately equal. C -bonded H atoms were treated as riding ($\mathrm{C}-$ $\mathrm{H}=0.93 \AA$). The water H atoms were placed at calculated positions.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We acknowledge the financial support of the National Science Foundation of China (29625102 and 29971033). We are also indebted to the Chemistry Department of The

Chinese University of Hong Kong for donation of the diffractometer.

References

Baggio, R. F., Calvo, R., Brondino, C., Garland, M. T., Atria, A. M. \& Spodine, E. (1995). Acta Cryst. C51, 382-384.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.
Blake, A. J., Hill, S. J., Hubberstey, P. \& Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909-915.
Chen, C., Xu, D., Xu, Y. \& Chen, C. (1992). Acta Cryst. C48, 1231-1233.
Chen, X.-M., Tong, M.-L., Luo, Y.-J. \& Chen, Z.-N. (1996). Aust. J. Chem. 49, 835-838.
Fujita, M., Kwon, Y. J., Ashizu, S. W. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.
Janiak, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1431-1435.
Kitagawa, S. \& Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1735-1745.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1990). R3m Software. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Solans, X., Aguilo, M., Gleizes, A., Faus, J., Julve, M. \& Verdaguer, M. (1990). Inorg. Chem. 29, 775-779.
Tong, M.-L. \& Chen, X.-M. (2000). Cryst. Eng. Commun. p. 1.
Tong, M.-L., Chen, H.-J. \& Chen, X.-M. (2000). Inorg. Chem. 39, 2235-2238.
Tong, M.-L., Chen, X.-M., Ye, B.-H. \& Ji, L.-N. (1999). Angew. Chem. Int. Ed. Engl. 38, 2237-2240.
Tong, M.-L., Chen, X.-M., Ye, B.-H. \& Ng, S. W. (1998). Inorg. Chem. 37, 52785281.

Tong, M.-L., Chen, X.-M., Yu, X.-L., \& Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 5-6.
Tong, M.-L., Lee, H. K., Chen, X.-M., Huang, R.-B. \& Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657-3659.
Tong, M.-L., Ye, B.-H., Cai, J.-W., Chen, X.-M. \& Ng, S. W. (1998). Inorg. Chem. 37, 2645-2650.
Tong, M.-L., Zheng, S.-L. \& Chen, X.-M. (1999). J. Chem. Soc. Chem. Commun. pp. 561-562.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-486.

